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Abstract— Robot localization is one of the most important
problems in robotics. Most of the existing approaches assume
that the map of the environment is available beforehand and
focus on accurate metrical localization. In this paper, we address
the localization problem when the map of the environment
is not present beforehand, and the robot relies on a hand-
drawn map from a non-expert user. We addressed this problem
by expressing the robot pose in the pixel coordinate and
simultaneously estimate a local deformation of the hand-drawn
map. Experiments show that we can successfully identify the
room in which the robot is located in 80% of the tests.

I. INTRODUCTION

Localization, the problem of estimating a robot pose in
the environment, is probably one of the most studied and
understood problems in mobile robotics. Several solutions
have been presented in the last decades, most of them based
on probabilistic inference over the space of possible robot
configurations [22]. Although the existing approaches have
been demonstrated to be robust, efficient and very accu-
rate [3, 6, 16], they mostly rely on one major assumption:
The existence of an already available map of the environ-
ment, built beforehand with the same sensing modality of
the robot.

In some circumstances, however, building such a map
could be a nuisance for the user. This is the case, for instance,
of vacuum cleaners, lawn mowers, pool cleaners and many
other service robots. Often, when the user buys such a
robot, he or she wants to use it immediately without waiting
for an expensive and time-consuming mapping routine to
complete. In some other cases, building an a-priori map is
not even possible, for instance in environments that may
harm humans, e.g., a minefield or a toxic factory. Moreover,
mapping algorithms may result in local minima and the
resulting maps might be unusable for navigation. Although
automatic tools to detect such inconsistencies exist [14], they
require an expert user to analyze the data to correct the map.

In this paper, we address the localization problem when no
map of the environment is available beforehand. We propose
an algorithm that solely requires a hand-drawn map of the
environment, sketched by the user. We believe that drawing
such a map puts no burden on the user and is an intuitive task.
Furthermore, we do not assume that the map is metrically
accurate nor proportional up to a single scale. Objects might
be missing, and the deformation of the map might change
at different locations. This reduces the ability to accurately
localize the robot in a metric sense, since the map is bended
in different ways and distances are not respected. To address
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Fig. 1. Occupancy grid of the dataset FR079 (top), built using a SLAM
algorithm, a hand-drawn map used to localize the robot (middle) and their
overlay (bottom).

these problems, we extend the Monte Carlo localization
algorithm in two ways. First, we express the robot pose in the
pixel coordinate of the drawing. This resolves the metrical
issues and provides a sort of normalization with respect to the
deformation. Second, we augment the state space of the robot
with a deformation parameter and track the local deformation
of the drawing over time.

II. RELATED WORK

Robot localization is a widely studied problem [22]
and several approaches have been proposed in the past,
such as Markov localization [7], Monte Carlo localization
(MCL) [3], and multiple hypothesis tracking (MHT) [9].
Those approaches rely on the existence of a prior map
and a static environment. Some researchers extended those
approaches to be able to handle changes in the environment
over time [23, 12, 1]. However, they still rely on metrical
maps and some prior information of the environment to be



built beforehand.
Few works have been done with respect to localization

with weak prior maps that could be incomplete or metrically
inconsistent. Koenig and Simmons [11] propose a localiza-
tion approach, where the user provides only a topological
sketch of the environment. Some authors used floor plan
maps available from construction blueprints. Ito et al. [8]
propose a localization algorithm that relies on blueprints of
the environment. They employ an RGB-D sensor to estimate
the walls of the environment and match them to the floor
plan. To improve the initialization, they rely on a map
of WiFi signal strengths. Setalaphruk et al. [17] employ a
multi-hypothesis filter on blueprints. They first compute a
Voronoi diagram of the floor plan and store its intersections
as landmarks. Second, they use the Voronoi intersection from
the current readings and match them to the one computed
from the map. Contrary to our approach, they assume that
the blueprint of the environment is metrically correct, and its
scale is known.

Most of the works using hand-drawn maps exploit them
as a mean of communication between the robot and a human
operator. Kawamura et al. [10] present an approach where
an operator first sketches a rough map of the environment
with a set of waypoints to follow. They use a library of
known objects to associate perceptions to the sketch map
and triangulate the robot position using angle measurements.
Skubic et al. [21] propose a sketch interface for guiding a
robot. The user draws a sketch of both the environment and
instructs the robot to go to certain locations. The system
computes a path in the hand-drawn map, and the robot
executes it in an open-loop controller, without localizing
the robot. Shah et al. [18] propose a similar approach. The
focus of the work, however, is on how to extract qualitative
instructions for the robot. They translate the instructions to
robot commands and localize the robot using an overhead
camera system. Yun and Miura [24] proposed and evaluated
a quantitative measure of navigability on hand-drawn maps.
The work only focuses on qualitative aspects of navigability
but does not address the ability to localize in them. Moreover,
the sketch maps that they considered are made of line
segments and are automatically generated. Skubic et al.
[20] propose an approach for qualitative reasoning about
sketch maps. The authors are able to extract information
such as an obstacle is on the right of the robot and give
qualitative commands as turn left or go straight. The work
has been extended by Chronis and Skubic [2] with the
use of reactive controllers to guide the robot. Forbus et al.
[5] developed nuSketch, a qualitative reasoning framework
exploiting topological properties and Voronoi diagrams. They
provide answers to query like finding places with certain
properties or properties of paths. Our work is orthogonal
to them, and the proposed localization algorithm can be
integrated with any of those control interfaces.

Localization using hand-drawn maps has received very
little attention from the robotics community. Parekh et al.
[15] presented a technique to perform scene matching be-
tween a map of the environment and a sketch using spatial

relations. They assume a set of objects is present in both
the sketch and the map with known segmentation. They
then use particle swarm optimization (PSO) techniques to
compute the alignment and the sketch deformation. Matsuo
and Miura [13] extended the previous work in a simultaneous
localization and mapping (SLAM) framework. They assume,
however that the sketch map is composed of rectangles
corresponding to building in the scene. Shah and Campbell
[19] present an algorithm for controlling a mobile robot
using a qualitative map consisting of landmarks and path
waypoints. They assume that both the sketch map and the
real environment is made of point landmarks and also assume
known data associations between them. In contrast to them,
our approach does not make any assumption on the format of
the sketch map and treats it as a raster image. Moreover, we
do not attempt to transform the hand-drawn map to reflect
the real world but we directly localize the robot in the hand-
drawn map. To the best of our knowledge, the proposed
approach is the first attempt to localize a robot from a generic
hand-drawn map with no further assumptions.

III. LOCALIZATION IN HAND-DRAWN MAPS

In this section, we describe the extension we made in the
original Monte Carlo localization algorithm [3] for localizing
in hand-drawn maps. We propose two main extensions. First,
we augment the state space of the robot with an additional
variable that represents the local deformation of the map.
Second, we localize the robot in the pixel coordinate frame
of the map, instead of the world coordinate frame. In order
to do so, we extended both the motion and the observation
model to be locally projected onto the hand-drawn map.

A. Monte-Carlo Localization in Pixel Coordinates

The goal of our work is to estimate the pose of the robot
xt ∈ SE (2) and a local scale s ∈ R at time t, given
the history of odometry measurements u1:t and observations
z1:t. Formally, this is equivalent to recursively estimate the
following posterior:

p(xt, st | z1:t,u1:t,m) = ηp(zt | xt, st,m)· ∫
xt−1,st−1

p(st | st−1)p(xt | xt−1, st−1,ut) ·

p(xt−1, st−1 | z1:t−1,u1:t−1,m) dxt−1dst−1, (1)

where η is a normalization factor and m is the hand-drawn
map. The motion model p(xt | xt−1, st−1, ut) denotes the
probability that the robot ends up in state xt given it executes
the odometry readings ut in state xt−1. The distribution
p(st | st−1) represents the transition process for the scale
parameter and the observation model p(zt | xt, st,m)
denotes the likelihood of making the observation zt given
the robot’s pose xt, the local scale st, and the map m.

Following the MCL approach, we approximate the dis-
tribution as a weighted sum of Dirac delta functions. The
recursive estimation is performed using the sequential impor-
tance resampling algorithm [4]. For the proposal, we sample
the pose and the scale from the motion model and the scale
transition process, respectively. Under the chosen proposal



distribution, we compute the weight of the particle according
to the observation model and the recursive term. The particle
set is then resampled, at each iteration, according to the
weight of the particles.

To compute the number of particles needed, one can
use the KLD sampling approach of Fox [6]. The algorithm
estimates a discrete approximation of the target distribution
using the weighted set of particles. During resampling,
it computes the Kullback-Leibler divergence each time a
new particle is resampled and stops the process when the
divergence is below a confidence level.

B. Proposal Distribution

The purpose of the proposal distribution is to provide a
mean for sampling a new set of particles given the current
one. In the original MCL algorithm, the proposal distribution
is the robot motion model. In our work, we need to provide
a proposal distribution for both the robot position x and
the local scale s. We modified the original motion model
describe in the MCL algorithm to project the motion of
the robot in the image coordinates. Let xit and sit the pose
and scale associated with the i-particle at time t and ut the
incremental odometry measurement. The new pose of the
particle is computed as follow

xit+1 = xit ⊕ S−1(ut ⊕ ê) S =

 sit 0 0
0 sit 0
0 0 1

 , (2)

where ut represents the odometry reading and ê is a sample
from the noise term. We sample ê =

[
qit θit

]T
from

the normal distribution and a wrapped normal distribution,
respectively for the translation qit and the rotational θit part.

q ∼ N (0,Σq) (3)
θt ∼ WN (0, σ2

θ), (4)

where Σq and σθ are the covariance matrix for the translation
and the standard deviation for the rotation. We modeled the
evolution of the scale similarly to a Brownian motion

sit+1 = sit + εi ε ∼ N (0, σ2
s), (5)

where εi is a sample from a normal distribution and σs is
the standard deviation of the scale increment. Note that we
include a standard deviation term in the Wiener process.
This is to account for smaller variations than its original
formulation. One can formulate Eq. 5 using the standard
formulation of the Wiener process by including an additional
scaling term to the εi. The scale sampling has been chosen to
be locally close to the scale of the previous step, with small
isotropic variations. The Brownian motion was a natural
choice for that, given its statistical properties.

Intuitively, given the pose of a particle and its estimated
scale, we first sample a zero mean, SE (2) transformation
from the odometry noise and perturb the odometry measure-
ment accordingly. We then project the perturbed odometry on
the hand-drawn map and apply the projected transformation
to the robot pose.

C. Observation Model

After we sample the particles according to the proposal
distribution, we follow the importance sampling principle
and compute the weights of the particle set. With our choice
of proposal, the weight of each particle must be proportional
to the observation model p(z | x, s,m), where we omitted
the time index for notational simplicity. Intuitively, this
model describes the likelihood of the measurement z, given
the hand-drawn map m, the local scale s and the pose of the
robot in the image coordinates x. In this work, we consider
2D laser range finders as sensors. The measurements z =
[z1, · · · , zK ]T consist of a set of range values along a set of
corresponding directions a = [α1, · · · , αK ]T . We employ
the beam based model [22] and modify it to project the
observations in the hand-drawn map.

Formally, let zi be the i-th range measurement along the
angle αi. Let us trace a ray on the map m from the robot pose
x to the closest obstacle in the map and be ẑ the measured
distance. The original formulation of the beam based model
considers ẑ as being expressed in world coordinates and
describes the measurement distribution as a mixture of four
components

p(zi | ẑi) =


whit

wdyn

wmax

wrnd


T 

fhit(zi, ẑi)
fdyn(zi, ẑi)
fmax(zi, ẑi)
frnd(zi, ẑi)

 , (6)

where fhit models the measurement noise, fdyn models the
unexpected obstacles not present in the map, fmax models
the sensor maximum range, and frnd models a uniformly
distributed random measurement. The functions are defined
as following

fhit(z, ẑ) = N (z; ẑ, σz) (7)
fdyn(z, ẑ) = TEXP(z;λ, ẑ) (8)
fmax(z, ẑ) = U(z; 0, zmax) (9)
frnd(z, ẑ) = U(z; zmax − δ, zmax + δ). (10)

Here, TEXP(x;λ, a) denotes a truncated exponential dis-
tribution with parameter λ and support between 0 and a.
U(x; b, c) denotes a uniform distribution between b and c and
δ is a window parameter. To account for the deformations,
we need to project the real measurements coming from
the sensor to the image coordinate frame by applying the
estimated transformation. In our case, this entails to scale
all the ranges according to estimated scale s. The resulting
observation model is

p(zi | s, ẑi) = p(
zi
s
| ẑi) (11)

All the parameters of the model have been learned from
real data. To collect the data for the learning phase, we
positioned the robot at fixed locations in the environment
and draw few different sketches for each location. Then, for
each sketch and location, we performed grid search to find
the best scale. Given the scale, we computed the maximum-
likelihood estimate of the parameters, following the approach
described in [22].



Fig. 2. Simulated Apartment (left) and Room (right) environment in
Gazebo. The area covered by the simulated laser scanner is shown in blue.

IV. EXPERIMENTAL RESULTS

We evaluated our approach in both simulated and real
environments. For the simulation, we used the Gazebo sim-
ulator available in ROS. We created two virtual environ-
ments, resembling a simulated room (Room) and a simulated
apartment (Apartment). Figure 2 depicts the two simulated
environments together with a simulated robot. In the real
world experiment, we tested our algorithm in our building
(FR079), whose map and a full dataset are publicly available.
We chose this dataset for two reasons. First it contains
very challenging aspects of localization algorithms, given the
presence of many, similarly looking rooms. Second, similar
data is publicly available online, and other researchers can
use that to replicate our results. Since not everyone has the
same artistic capabilities, we asked nine people to walk in
the environment and draw a sketch. Figure 5 shows all the
nine sketches together.

We use the same parameters for all our experiments
and the simulated robot. For the proposal distribution, we
have Σq = 0.1I as covariance matrix for the translational
component, σθ = 0.05 for the rotational noise, and σs = 0.1
for the scale noise. With respect to the observation model, we
set σz = 0.1 according to our sensor specification, and we
estimated the rest of the parameters from data. The resulting
estimated values are λ = 0.1 for the exponential distribution,
δ = 0.01 for the max range, and whit = 0.005, wdyn = 0.5,
wmax = 0.3, wrnd = 0.4 for the mixture weights. We
also subsampled the range measurements to only 10 beams
per scan, to compensate for the independence assumption
of the laser beams. We initialized the filter by drawing the
particles uniformly over a region of the map drawn by the
user, for the position, uniformly between −π and π for
the orientation, and uniformly between 0.01 and 1 for the
scale. The maximum number of particles being used in these
experiments is 100K. However, in most of experiment half
or even a quarter of this amount is sufficient. The square
region was about the size of a room, simulating a plausible
initial guess from the user.

A. Simulated Experiments

For the simulation, we used the Room environment as a
proof of concept scenario. We let the robot start in the lower
right corner of the room and performed 4 different paths.
We simulated a weak prior on the initial robot position by
sampling the particles uniformly in a square of 150 × 150
centered at the robot position. We obtained a success rate

Fig. 3. Hand-drawn map of the Apartment (left) and the Room (right)
environment. The dashed squares represents the rooms we used in our
experiment.

Fig. 4. Overlay of the hand-drawn map over the Apartment environment.
The hand-drawn map has been manually aligned. Note the non uniform
scaling and the distortions present.

of 100% in localizing the robot. Some videos of the whole
experiment are available on Youtube1.

For the second experiment in the Apartment environment,
we simulated a series of navigation tasks, where the robot
starts in a certain location and is instructed to reach a specific
room. We believe this is the natural application of our
approach, where the user sketches the map, a rough location
of the robot and ask the robot to reach a particular location,
marking it on the map. We set up our experiments in the
following way. After we draw a sketch of the environment,
we subdivided it into small squares, each representing a
room to be reached. We then randomly generated 10 different
navigation tasks, in the form of go from room A to room B.
For each sequence, we performed 10 runs of our localization
algorithm with different random seeds. We considered a
sequence as a success if the robot, at the end of the trajectory,
is localized in the correct room.

Figure 3 shows the hand-drawn map used in this exper-
iments, together with our subdivision. To understand the
differences between the real map and the hand-drawn one,
Figure 4 shows an overlay of the two, where we manually
rotate, scaled and aligned the two maps. Even under manual
alignment, one can see that the scaling of the sketch is not
uniform with respect to the real map and that many distor-
tions are present. Table I shows the results of the experiment,
together with the sequences we used. Our approach has an
overall success rate of 93%. We only had a few failures in

1https://goo.gl/mCOsCK

https://goo.gl/mCOsCK


room a → b Chance of Success

1 → 6 100%
1 → 10 100%
6 → 1 100%

6 → 10 100%
8 → 1 100%
8 → 6 100%

10 → 1 100%
10 → 6 70%
13 → 6 80%
13 → 10 80%

Total 93%

TABLE I
SUCCESS RATE FOR THE APARTMENT ENVIRONMENT

the paths from 10 to 6 and 13 to 6. Note that this are the
most challenging paths, since are the longest and traverse
the whole map. We also had some problems from 13 to 10.
This was due to the ambiguity in the two corners, where the
robot was mistakenly localized in the wrong one.

All the trajectories for this experiment are publicly avail-
able on youtube2.

B. Real World Experiments

Figure 5 shows the hand-drawn maps of Building 079 used
for this experiment. The numbers in the figure represent the
different rooms we identified in the environment. In a way
similar to the simulated experiments, we randomly generate 7
navigation sequences and, for each sequence, we performed
10 runs of our localization algorithm with different random
seeds. Table II shows the localization results with the real
data for each run. The ratio difference denotes the absolute
difference between the ratio (length/width) of the original
occupancy grid map and each hand-drawn map. Figure 6
illustrates the success rate as a function of the difference in
ratios. We see that localization has a high success rate, almost
80%, when the difference in the ratio of the hand-drawn map
is relatively low. The success rate of localization decline,
when this difference increases. The table shows the highest
failure in the test run from room 9 to 12. Room number
9 is fully occupied with furniture that heavily distorted the
image of the walls in the laser scan, therefore, the robot
was not able to localize properly in the beginning. The robot
randomly localized itself in any of the other rooms looking
alike. The lowest successful rate was obtained when using
the map No. 2. The user has drawn the doors in an unusual
way that the robot can not recognize the entrance and exit
properly. The localization results for AIS map-03 and map-34

and is publicly available on youtube.
In addition to FR079, we also tested our method on the

Intel dataset. The videos from the Intel dataset are publicly
available on youtube5.

We believe the reason our approach failed in more extreme
ratio differences is due to the estimation of a single scale.

2https://goo.gl/D0Oou7
3https://goo.gl/XkCG1s
4https://goo.gl/XVQA5Q
5https://goo.gl/UPFo1q
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Fig. 6. Percentage of FR079 runs successfully localized.

The framework here presented can be straightforwardly ex-
tended to account for multiple scales and shearing. A proper
exploration of different kind of transformation is subject to
future work.

V. CONCLUSIONS

In this paper, we addressed the problem of robot localiza-
tion when no accurate map of the environment is available
and the robot has to solely rely on a hand-drawn map
sketched by the user. To do so, we extended the classical
Monte Carlo localization algorithm in two ways. First, we
propose to localize with respect to the image coordinate
frame. Second, we track, together with the pose of the robot,
a local deformation of the hand-drawn map. Since no metric
information is available on the hand-drawn map, we propose
to evaluate the localization in terms of coarse localization
at the level of rooms of the environment. We evaluated
our approach in both simulated and real environments and
achieved a correct localization, up to the room level, of
about 80% of the cases when the ratio of the sketch map
resembles the real environment. We expect to achieve this
kind of performance also on blueprints, which are metrically
accurate, even when the scale of blueprint is not known in
advance. We believe this is a starting point that addresses
a very challenging problem with potential applications. In
future, we plan to extend our approach to incorporate more
sophisticated distortion models and employ it for navigation
purposes.
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