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Abstract
Linear value function approximation is a stan-
dard approach to solving reinforcement learning
problems with a large state space. Automatic fea-
ture selection is an important research topic since
designing good approximation features is diffi-
cult. We propose a new method for feature selec-
tion, which is based on a low-rank factorization
of the transition matrix. Our approach derives
features directly from high-dimensional raw in-
puts, such as image data. The method is easy
to implement using SVD, and our experiments
show that it is faster and more stable than alter-
native methods.

1. Introduction
Most reinforcement learning methods for solving problems
with large state spaces rely on some form of value function
approximation (Sutton & Barto, 1998; Szepesvári, 2010).
Linear value function approximation is one of the most
common and simplest approximation methods, express-
ing the value function as a linear combination of features,
which are provided in advance.

While linear value function approximation is less powerful
than modern deep reinforcement learning, it is still impor-
tant in many domains. In particular, linear models are in-
terpretable and need relatively few samples to reliably com-
pute a value function. Features also make it possible to en-
code prior knowledge conveniently. Finally, the last layer
in deep neural networks, used for reinforcement learning,
often calculates a linear combination of the underlying neu-
ral network features (Song et al., 2016). In our proposed
method, we generate orthonormal basis functions from the
transition matrix and the reward function that produce use-
ful features directly from raw input data.
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A significant limitation of linear value function approxi-
mation is that it requires good features, in other words,
features that can approximate the optimal value function
well. This is often difficult to achieve since good a priori
estimates of the optimal value functions are rarely avail-
able. Considerable effort has, therefore, been dedicated
to methods that can automatically construct useful fea-
tures or at least select them from a larger set. Examples
of such methods include proto-value functions (Mahade-
van & Maggioni, 2007), diffusion wavelets (Mahadevan &
Maggioni, 2006), Krylov bases (Petrik, 2007), BEBF (Parr
et al., 2007), L1−regularized TD (Kolter & Ng, 2009), and
L1-regularized ALP (Petrik et al., 2010).

As with all data-driven methods, feature construction (or
selection) must make some simplifying assumptions about
the problem structure that reduce the number of samples
needed. In this paper, we assume that the transition matrix
that predicts expected next feature vector can be approxi-
mated using a low-rank matrix. Using low-rank approxi-
mation has led to significant successes in several machine
learning domains, including collaborative filtering (Mur-
phy, 2012), reinforcement learning (Ong, 2015; Cheng
et al., 2017), and more recently Markov chains (Rendle
et al., 2010).

Our main contribution is a new feature selection method
that uses singular value decomposition (SVD) to compute
a low-rank factorization of the transitions matrix and ap-
proximate reward predictor given the raw input data. We
also show that it is crucial to include the rewards as one
of the features. In comparison to similar methods, our ap-
proach is more robust, faster by orders of magnitude on
large training sets, and most importantly results in steadily
lower Bellman error in linear fixed-point solution.

The remainder of the paper is organized as follows. In Sec-
tion 2, we describe the general framework of linear value
function approximation and properties that are relevant to
feature selection. In Section 3, we describe the new feature
construction method and analyze its approximation error.
Then in Section 4, we present the connections with other
feature construction algorithms, and, in Section 5, we em-
pirically compare the most efficient methods.
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2. Linear Value Function Approximation
In this section, we summarize the relevant background on
linear value function approximation and feature construc-
tion. We also derive a new representation for computing
fixed-point solutions, which will be instrumental in under-
standing our method.

We consider a reinforcement learning problem formulated
as a Markov decision process (MDP) with states S , actions
A, transition probabilities P : S × A × S → [0, 1], and
rewards r : S × A → R (Puterman, 2005). The values
P (s, a, s′) denote the probability of transitioning to state
s′ after taking an action a in a state s. Our objective is to
compute a stationary policy π that maximizes the expected
γ−discounted infinite-horizon return. It is well-known that
the value function vπ for a policy π must satisfy the fol-
lowing Bellman equation (e.g., Puterman (2005)):

vπ = rπ + γPπvπ , (1)

where Pπ and rπ are the matrix of transition probabilities
and the vector of rewards, respectively, for the policy π.

Value function approximation becomes necessary in MDPs
with large state spaces. Linear value function approxima-
tion approximates the value function as a linear combina-
tion of features φ1, . . . , φk ∈ R|S|, which are real vec-
tors over states. Using a vector representation, an approx-
imate value function ṽπ can be expressed as: ṽπ = Φw,
for some vector w = {wi, . . . , wk} of scalar weights that
quantify the importance of features. Here, Φ is the feature
matrix of dimensions |S| × k; the columns of this matrix
are the features φi.

Numerous algorithms for computing linear value approx-
imation have been proposed (Sutton & Barto, 1998;
Lagoudakis & Parr, 2003; Szepesvári, 2010). We focus
on fixed-point methods that compute the unique vector of
weights wπ

Φ that satisfy the projected Bellman equation (1):

wπ
Φ = Φ+(rπ + γPπΦwπ

Φ) , (2)

where Φ+ denotes the Moore-Penrose pseudo-inverse of
Φ (e.g., Golub & Van Loan (2013)). This equation
follows by applying the orthogonal projection operator
Φ(Φ>Φ)−1Φ> to both sides of (1).

The fixed-point solution to (2) can also be seen as a lin-
ear compression of the transition matrix and reward vec-
tor (Parr et al., 2008; Szepesvári, 2010). The “compressed”
transition matrix PπΦ and reward vector rπΦ are:

PπΦ = (Φ>Φ)−1Φ>PπΦ, rπΦ = (Φ>Φ)−1Φ>rπ .

(3)

The fixed-point weights wπ
Φ are then computed as a value

function for this compressed model to satisfy the following

set of linear equations:

wπ
Φ = rπΦ + γPπΦwπ

Φ . (4)

Since we want to construct features that can be used to rep-
resent a good value function, it is essential to quantify the
quality of such a function. The standard bound on the per-
formance loss of a policy, computed using, for example, ap-
proximate policy iteration, can be bounded as a function of
the Bellman error (e.g., Williams & Baird (1993)). The fol-
lowing theorem states that the Bellman error can be decom-
posed into two components: the error in the compressed
rewards and in the compressed transition probabilities.

Theorem 1 (Song et al. 2016). Given a policy π and fea-
tures Φ, the Bellman error of a value function v = Φwπ

Φ

satisfies:

BEΦ = (rπ − ΦrπΦ)︸ ︷︷ ︸
∆π
r

+γ (PπΦ− ΦPπΦ)︸ ︷︷ ︸
∆π
P

wπ
Φ .

The Bellman error can be upper bounded as follows:

‖BEΦ ‖2 ≤ ‖∆π
r ‖2 + ‖∆π

P ‖2‖wπ
Φ‖2 ≤

≤ ‖∆π
r ‖2 + ‖∆π

P ‖F ‖wπ
Φ‖2

The second inequality holds since ‖X‖F ≥ ‖X‖2.

3. SVD+R: A Low-rank Approximation for
Feature Construction

In this section, we describe the proposed method for se-
lecting features from singular value decomposition of tran-
sition probabilities and rewards. First, we describe the
method assuming that it is possible to represent the value
function in a tabular form. Since this approach does not
scale, we describe an extension to infinite domains using
raw feature inputs (such as images) as intermediate simpli-
fying features, similarly to Linear Feature Discovery (LFD)
in Song et al. (2016).

Algorithm 1 SVD+R: Low-rank feature discovery
Input: Transition matrix P , rewards r, and number of
features k + 1
1 - Compute SVD decomposition of P : P = UΣV >

2 - Assuming decreasing singular values in Σ, select the
first k columns of U : U1 ← [u1, . . . , uk]
return: Approximation features: Φ = [U1, r].

An attractive property of our algorithm, summarized in Al-
gorithm 1, is its simplicity and low computational complex-
ity. Selecting the essential features only requires comput-
ing the singular value decomposition—for which many ef-
ficient methods exist—and augmenting the result with the
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reward function. As we show next, this simple approach
is well-motivated by bounds on approximation errors and
empirically achieves a smaller error than existing feature
selection methods. It is important to note that including
the vector of rewards r in the features is essential both to
achieving error bounds and good solutions empirically.

One may expect that when the matrix P is of a rank at
most k then using the first k singular vectors will result in
no error. This is indeed the case. However, such low-rank
matrices are rare in practice. Our next theorem shows that
it is sufficient that the transition matrix P is close to a low-
rank matrix for our method to achieve small approximation
errors. In order to bound the error, let the SVD decomposi-
tion of P be as follows SVD(P ) = UΣV >, where

U =
[
U1 U2

]
, Σ =

[
Σ1 0
0 Σ2

]
, V =

[
V1 V2

]
.

The matrix U1 has k columns so Algorithm 1 generates
Φ = U1. The following theorem shows a bound on the
error regarding the largest singular value for a vector not
included in the features.

Theorem 2. Given features Φ computed by Algorithm 1,
the error terms in Theorem 1 can be bounded as ‖∆P ‖2 ≤
‖Σ2‖2 and ‖∆r‖2 = 0.

Proof of Theorem 2. From the definition of ∆P and PΦ we
get the following equality:

∆P = UΣV >U1 − U1(U>1 U1)−1U>1 UΣV >U1

Recall that singular vectors are perpendicular which im-
plies that (U>1 U1)−1 = I and U>1 U =

[
I1 0

]
. Substitut-

ing these terms into the equality above, we get:

‖∆P ‖2 =
∥∥(UΣV > − U1Σ1V

>
1 )U1

∥∥
2

≤
∥∥UΣV > − U1Σ1V

>
1

∥∥
2
‖U1‖2

Simple algebraic manipulation shows that∥∥UΣV > − U1Σ1V
>
1

∥∥
2

= ‖Σ2‖2 and ‖U1‖2 ≤ 1
because U is an orthogonal matrix. This establishes the
inequality for ∆P ; the result for ∆r follows directly from
the properties of orthogonal projection since r itself is
included in the features.

Theorem 2 implies that if we choose Φ in a way that the
singular values in Σ2 are zero (when the transition matrix
is low rank), ∆P would be zero. That means that for a
low-rank matrix, the error ∆P will be zero and thus the
approximation will be precise.

The transition matrix and reward vector used in Algo-
rithm 1 will be too large to work with most problems of
realistic size. To make our method practical, we take an
approach proposed by Song et al. (2016). That is, we first

use a source of raw features—such as the game image in
video games, or the output from a deep learning classifier—
to compress the matrix of transition probabilities. Then we
run Algorithm 1 on this compressed transition matrix and
reward vector.

Let A be an |S| × l matrix of l raw features. As with Φ,
each row corresponds to one state, and each column cor-
responds to one raw feature, such as the gray color value
of a pixel. The compressed transition matrix PA and com-
pressed rewards rA are defined as in (3). The dimensions
now correspond to the number of raw features, and these
values can be easily estimated from samples. Once the val-
ues PA and rA are estimated, we can run Algorithm 1 with
them instead of P and r. To get the ultimate value of the
features, it is then sufficient to compute AΦ̂ where Φ̂ is the
output of Algorithm 1. The matrix Φ̂ represents features
for PA and is of a dimension l×k where l is the number of
raw features in A.

The approach of first using raw features and then comput-
ing a small number of useful features is simple and practi-
cal, but it is also essential to understand the consequences
of relying on the raw features. Since our computed features
are a linear combination of the raw features, they cannot ex-
press more complex value functions. Our feature reduction
method thus introduces additional error—akin to bias—but
reduces sampling error—akin to variance. The following
theorem shows that the errors due to our approximation and
using raw features merely add up with no additional inter-
actions.
Theorem 3. Assume that the raw features A for P and
computed features Φ̂ for PA are normalized, such that
‖A‖2 = ||Φ̂||2 = 1. Then:

‖∆AΦ̂
P ‖2 ≤ ‖∆

A
P ‖2+‖∆Φ̂

PA‖2, ‖∆AΦ̂
r ‖2 ≤ ‖∆

A
r ‖2+‖∆Φ̂

rA‖2,

where the superscript of ∆ indicates features for which the
error is computed; for example ∆Φ̂

PA
= PAΦ̂− Φ̂PAΦ̂ .

Proof. Due to lack of space, we show the result only for
∆P ; the result for ∆r follows similarly. From the defini-
tion, ∥∥∥∆AΦ̂

P

∥∥∥
2

=
∥∥∥PAΦ̂−AΦ̂PAΦ̂

∥∥∥
2
.

Now by adding a zero (APAΦ̂− APAΦ̂) and applying tri-
angle inequality, we get:∥∥∥∆AΦ̂

P

∥∥∥
2

=
∥∥∥PAΦ̂−APAΦ̂ +APAΦ̂−AΦ̂PAΦ̂

∥∥∥
2
≤

≤
∥∥∥PAΦ̂−APAΦ̂

∥∥∥
2

+
∥∥∥APAΦ̂−AΦ̂PAΦ̂

∥∥∥
2
≤

≤ ‖PA−APA‖2
∥∥∥Φ̂
∥∥∥

2
+
∥∥∥PAΦ̂− Φ̂PAΦ̂

∥∥∥
2
‖A‖2 .

The theorem then follows directly from algebraic manipu-
lation and the fact that the features are normalized.
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Note that the normalization of features required in Theo-
rem 3 can be achieved by multiplying all features by an
appropriate constant, and it does not affect the computed
approximate value function in any way. It does, however,
affect the scale of wΦ.

4. Relationship to Linear Feature Discovery
The method that is closest to SVD+R is the Linear Feature
Discovery (LFD) (Song et al., 2016). LFD is motivated
by the theory of predictive optimal feature encoding. A
low-rank encoder Eπ is predictively optimal if there exist
decoders Dπ

s and Dπ
r such that:

AEπDπ
s = PπA , AEπDπ

r = rπ .

Song et al. (2016) show that when an encoder and decoder
are predictively optimal, then the Bellman error is 0. Un-
fortunately, it is almost impossible to find problems in prac-
tice in which a predictively optimal controller exists. No
bounds on the Bellman error are known when a controller
is merely close to predictively optimal.

Both SVD+R and LFD construct a low-rank approximation
of the transition matrix. Algorithm 2 in Song et al. (2016)
shows the LFD algorithm. Recall that A is the matrix
of raw features, which are sampled from the state space,
such as images of individual states. LFD corresponds to a
coordinate descent that is often used for low-rank matrix
completion e.g., (Hastie et al., 2015). SVD+R computes a
similar low-rank decomposition using SVD. Using SVD is
faster, offers error bounds, and performs as well or better
in our empirical results.

5. Empirical Evaluation
In this section, we empirically compare the methods that
we discussed in previous sections. Song et al. (2016)
present an extensive empirical comparison of LFD with
radial basis functions (RBFs) (Lagoudakis & Parr, 2003)
and random projections (Ghavamzadeh et al., 2010). They
show that LFD outperforms all of them. Here we focus on
LFD, SVD+R, and RPr, which stands for random projec-
tion method. We use an image-based version of the Cart-
Pole benchmark to compare the computational complexity
and solution quality of SVD+R and LFD.

5.1. Cart-Pole

These experiments evaluate the similarity between the lin-
ear feature encoding approach and our SVD+R method on
a modified version of Cart-Pole, which is a complex re-
inforcement learning benchmark problem. The controller
must learn a good policy by merely observing the image
of the Cart-Pole without direct access to the position of
the cart or the angle of the pole. This problem is large

enough that the computational time plays an important role,
so we also compare the computational complexity of the
two methods.

To obtain training data, we collected the specified number
of trajectories with the starting angle and angular velocity
sampled uniformly on [−0.1, 0.1]. The cart position and
velocity are set to zero at each episode. The algorithm was
given three consecutive, rendered, gray-scale images of the
Cart-Pole. Each image has 39×50 pixels, so the raw state is
a 39×50×3 = 5850−dimensional vector. We chose three
frames to preserve the Markov property of states without
manipulating the Cart-Pole simulator in OpenAI Gym. We
used k = 50 features for both LFD and SVD+R similar to
state properties in Song et al. (2016).

We implemented LFD as described by Song et al. (2016)
and followed an analogous setup when implementing
SVD+R. The training data sets are produced by running
the cart for [50, 100, 200, 400, 600] episodes with a random
policy. We then run policy iteration to iterate up to 50 times
or until there is no change in the A′ = PπA matrix.

The learned policy was later evaluated 100 times to obtain
the average number of balancing steps. Figure 1 displays
the average number of steps during which the pole kept its
balance using the same training data sets. For each episode,
a maximum of 200 steps was allowed to run. This result
shows that on the larger training sets the policies obtained
from SVD+R and LFD are quite similar, but with small
training sets SVD+R shows a better performance.

We also evaluated the average running time of LFD and
SVD+R for obtaining the value function with k = 50. Fig-
ure 2 depicts the result of this comparison. The computa-
tion time of SVD+R grows very slowly as the number of
training episodes increases; at 600 training episodes, the
maximum number of episodes tested, SVD+R is 10 times
faster than LFD. Therefore, LFD would likely be impracti-
cal in large problems with many training episodes.

6. Conclusion
We propose SVD+R, a new feature construction technique
that computes a low-rank approximation of the transition
probabilities. Our experimental results show that SVD+R
works as well as LFD but with a much lower computa-
tional complexity. This addresses a central limitation of
LFD and makes the algorithm more practical when solving
large-scale problems. SVD+R also has better theoretical
properties than LFD, and it is easier to implement and ana-
lyze.

It is unlikely that linear feature selection techniques can
be competitive with modern deep reinforcement learning.
Linear feature selection is nevertheless important. First,
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Figure 1. Average number of balancing steps with k = 50.
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it can be used in conjunction with deep learning methods
where the raw features are sources from the neural net. Sec-
ond, linear features can be used to gain additional insights
into the given reinforcement learning problem. These are
issues that we are planning to address in future work.
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Szepesvári, Csaba. Algorithms for Reinforcement Learn-
ing. Morgan & Claypool Publishers, 2010.

Williams, Ronald J and Baird, Leemon C. Tight per-
formance bounds on greedy policies based on imper-
fect value functions. Technical report, Technical report,
College of Computer Science, Northeastern University,
1993.


	Introduction
	Linear Value Function Approximation
	SVD+R: A Low-rank Approximation for Feature Construction
	Relationship to Linear Feature Discovery
	Empirical Evaluation
	Cart-Pole

	Conclusion

