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Abstract

We address the problem of computing reli-
able policies in reinforcement learning prob-
lems with limited data. In particular,
we compute policies that achieve good re-
turns with high confidence when deployed.
This objective, known as the percentile
criterion, can be optimized using Robust
MDPs (RMDPs). RMDPs generalize MDPs
to allow for uncertain transition probabili-
ties chosen adversarially from given ambi-
guity sets. We show that the RMDP solu-
tion’s sub-optimality depends on the spans
of the ambiguity sets along the value func-
tion. We then propose new algorithms that
minimize the span of ambiguity sets defined
by weighted L1 and L∞ norms. Our primary
focus is on Bayesian guarantees, but we also
describe how our methods apply to frequen-
tist guarantees and derive new concentration
inequalities for weighted L1 and L∞ norms.
Experimental results indicate that our opti-
mized ambiguity sets improve significantly on
prior construction methods.

1 Introduction

Applying reinforcement learning to problem domains
that involve high-stakes decisions, such as medicine or
robotics, demands that we have high confidence in the
quality of a policy before deploying it. Markov De-
cision Processes (MDPs) represent a well-established
model in reinforcement learning (Puterman, 2005; Sut-
ton and Barto, 2018), but their sequential nature
makes them particularly sensitive to parameter errors,
which can quickly accumulate (Mannor et al., 2007;
Tirinzoni et al., 2018; Xu and Mannor, 2009). Parame-
ter errors are unavoidable when estimating MDPs from
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data (Laroche et al., 2019). We focus on computing
policies that maximize high-confidence return guaran-
tees in the batch settings. Such guarantees reduce the
chance of disappointing the stakeholders after deploy-
ing the policy and give them a choice to gather more
data or switch to an alternative strategy (Petrik et al.,
2016).

We propose a new method for computing reliable poli-
cies that achieve, with high confidence, good returns
once deployed. This objective is also known as the
percentile criterion (Delage and Mannor, 2010) and
can be modeled as risk-aversion to epistemic uncer-
tainty (Petrik and Russel, 2019). Because optimiz-
ing the percentile criterion is NP-hard (Delage and
Mannor, 2010), we use Robust MDPs (RMDPs) (Iyen-
gar, 2005) to optimize it approximately. We estab-
lish new error bounds on the performance loss of the
RMDPs’ policy compared to the optimal percentile so-
lution. Using these new bounds when constructing the
RMDPs leads to policies with significantly better re-
turn guarantees than reported in prior work (Delage
and Mannor, 2010; Petrik and Russel, 2019).

RMDPs generalize MDPs to allow for uncertain, or un-
known, transition probabilities (Iyengar, 2005; Nilim
and Ghaoui, 2005; Wiesemann et al., 2013). Transi-
tion probabilities are hard to estimate from data, and
even small errors significantly impact the returns and
policies. RMDPs consider transition probabilities to
be chosen adversarially from a so-called ambiguity set
(or an uncertainty set). The optimal policy is com-
puted by solving a specific zero-sum game in which
the agent chooses the best policy, and an adversarial
nature chooses the worst transition probabilities from
the ambiguity sets. RMDPs are tractable when their
ambiguity sets satisfy so-called rectangularity assump-
tions (Goyal and Grand-Clement, 2018; Mannor et al.,
2016; Wiesemann et al., 2013).

Given the goal is to optimize the percentile criterion,
the critical question is how to construct the ambiguity
sets from state transition samples to optimize the per-
centile criterion. Prior work constructs ambiguity sets
as confidence regions bounded by a distance from a
nominal (expected) transition probability (Auer et al.,
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2009; Gupta, 2019; Iyengar, 2005; Petrik et al., 2016;
Petrik and Russel, 2019; Strehl and Littman, 2004). In
most cases, the ambiguity sets are represented as L1-
norm (also referred to as total variation) balls around
the nominal probability. In comparison with other
probability distance measures, like KL-divergence, the
polyhedral nature of the L1-norm allows more efficient
computation (Ho et al., 2018).

The main contribution of this paper is a new tech-
nique for optimizing the shape of ambiguity sets in
RMDPs. Prior work simply constructs ambiguity sets
with the smallest size, or volume, that is sufficient to
provide the desired high-confidence guarantees. Our
new bounds show that the span of the ambiguity set
along a specific direction is much more important than
its volume. To minimize their span, we consider asym-
metric ambiguity sets defined in terms of weighted L1

and L∞ balls. Recent results shows that RMDPs with
such ambiguity sets can be solved very efficiently (Ho
et al., 2018, 2020). Although our primary focus is
on the Bayesian setup, we also discuss the frequen-
tist setup and derive new high-confidence concentra-
tion inequalities for the weighted L1 and L∞ norms.

The remainder of the paper is organized as follows. We
first describe the necessary background in Section 2
and bound the performance loss of RMDPs as a func-
tion of the ambiguity sets’ span in Section 3. Section 4
describes algorithms that minimize the span of ambi-
guity sets by optimizing the weights of the norms used
in their definition. Then, Section 5 describes meth-
ods for choosing the size of the weighted-norm ambi-
guity sets. In Section 6, we outline the approach in
the frequentist setup and present new concentration
inequalities for weighted L1 and L∞ ambiguity sets.
Finally, the experimental results in Section 7 show that
minimizing ambiguity sets’ span greatly improves the
RMDPs’ solution quality.

Notation: Bold letters, like xxxs, indicate an s-th vector,
while ys would indicate the s-th element of a vector yyy.
The symbol ∆N denotes the N -dimensional probabil-
ity simplex (non-negative vectors that sum to 1). We
also use AB to denote the set of all functions A → B.

2 Framework and Related Work

We consider the standard infinite-horizon MDP set-
ting with finite states S = {1, . . . , S} and actions
A = {1, . . . , A}. The agent can take any action
a ∈ A in every state s ∈ S and transitions to the
next state s′ according to the true transition function
P ⋆ : S × A → ∆S , where ∆S is a probability sim-
plex. For any transition function P : S × A → ∆S ,
we use the shorthand ppps,a = P (s, a) to denote the vec-
tor of transition probabilities from a state s ∈ S and

an action a ∈ A. The agent also receives a reward
rs,a,s′ ∈ R; we use rrrs,a = (rs,a,s′)s′∈S ∈ RS to de-
note the vector of rewards. The goal is to compute
a deterministic policy π : S → A that maximizes the
γ-discounted return (Puterman, 2005):

max
π∈Π

ρ(π, P ) = max
π∈Π

E

[ ∞∑
t=0

γt · rSt,π(St),St+1

]
,

where S0 ∼ ppp0, St+1 ∼ P ⋆(St, π(St)), ppp0 ∈ ∆S is
the initial probability distribution, and Π is the set
of all deterministic policies. The return function ρ is
parameterized by P , because we assume them to be
uncertain or unknown.

We consider the batch RL setting in which the transi-
tion function must be estimated from a fixed dataset
D = (st, at, s

′
t)t=1,...,T generated by a behavior policy.

We describe the Bayesian setup first and outline the
frequentist extension in Section 6. Bayesian techniques
start with a prior distribution over the transition func-
tion P ⋆ and then derive a posterior distribution f over
P ⋆ (Delage and Mannor, 2010; Gelman et al., 2014;
Xu and Mannor, 2009). We use the concise notation
P̃ = P ⋆ |D to represent the posterior over the tran-
sition function conditioned on the data D. In other
words, E[P̃ ] = E[P ⋆ |D].

Percentile citerion The Bayesian percentile crite-
rion optimization simultaneously optimizes for the
policy π and a high-confidence lower bound on its per-
formance y:

max
π∈Π

max
y∈R

{
y | PP̃∼f

[
ρ(π, P̃ ) ≥ y

]
≥ 1− δ

}
. (1)

The confidence parameter δ ∈ [0, 1/2) bounds the prob-
ability that the optimized policy π fails to achieve a
return of at least y when deployed. For example, δ = 0
maximizes the worst-case return, and δ = 0.5 max-
imizes the median return. It is common in practice
to choose a small positive value, such as δ = 0.05, in
order to achieve meaningful guarantees without being
overly conservative. Also, the constraint δ < 1/2 is im-
portant as our results (Theorem 3.2) do not hold for
the risk-seeking setting with δ ≥ 1/2.

There are several important practical advantages to
optimizing the percentile criterion instead of the aver-
age return (Delage and Mannor, 2010). First, the out-
put policy is more robust and less likely to fail catas-
trophically due to model errors. Second, the objective
value y in (1) provides a high-confidence lower bound
on the true return. Having such a guarantee on its
return helps to avoid an unpleasant surprise when the
policy π is deployed. If the guarantee y is insufficiently
low, the stakeholder may decide to collect more data
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or choose a different methodology for guiding their de-
cisions.

We emphasize that we develop algorithms that are
independent of how the posterior distribution f is
computed. Bayesian priors can be as simple as in-
dependent Dirichlet distributions over ppp⋆s,a for each
state s and action a. However, hierarchical Bayesian
models are more practical since they can generalize
among states even when |D| ≪ S (Delage and Man-
nor, 2010; Petrik and Russel, 2019). Many tools, such
as Stan (Stan Development Team, 2017) or JAGS, now
exist that allow for convenient and efficient computa-
tion of the posterior distribution f using MCMC.

Robust MDPs Because the optimization in (1) is
NP-hard (Delage and Mannor, 2010), we seek new
algorithms that can approximate it efficiently. Ro-
bust MDPs (RMDPs), which extend regular MDPs,
are a convenient and powerful framework that can
be used to optimize the percentile criterion. In par-
ticular, RMDPs allow for a generic ambiguity set
P̂ ⊆

{
P : S ×A → ∆S

}
of possible transition func-

tions instead of a single known value P . The solution
to an RMDP is the best policy for the worst-case plau-
sible transition function:

max
π∈Π

min
P∈P̂

ρ(π, P ) . (2)

The optimization problem in (2) is NP-hard (Nilim
and Ghaoui, 2005; Wiesemann et al., 2013) but is
tractable for rectangular ambiguity sets which are de-
fined independently for each state and action (Iyengar,
2005; Le Tallec, 2007). We, therefore, restrict our at-
tention to SA-rectangular ambiguity sets defined as
p-norm balls around nominal probability distributions
for some w : S ×A → RS++ and ψ : S ×A → R+:

P(w,ψ) = {P ∈ F | P (s, a) ∈ Ps,a(w(s, a), ψ(s, a))} ,

where F = (∆S)S×A. In the remainder of the paper,
we resort to the shorter notation wwws,a = w(s, a) and
ψs,a = ψ(s, a) when the meaning is obvious from the

context. Note that P̂ refers to a generic ambiguity
set, while P(w,ψ) refers to the specific norm-based
one. The ambiguity set Ps,a(www,ψ) for s ∈ S, a ∈ A,
positive weights www ∈ RS++, and budget ψ ∈ R+ is
defined as:

Ps,a(www,ψ) =
{
ppp ∈ ∆S :

∥∥ppp− p̄pps,a∥∥www ≤ ψ} , (3)

where p̄pps,a = EP̃
[
P̃ (s, a)

]
is the mean posterior tran-

sition probability. The weighted polynomial norms
are defined as ∥yyy∥1,www =

∑S
i=1 wi · |yi| and ∥yyy∥∞,www =

max {wi·|yi| | i ∈ S}. We use the generic notation ∥·∥www
in statements that hold for both ∥·∥1,www and ∥·∥∞,www.

The weights www in (3) determine the shape of the am-
biguity set, and the budget ψ determines its size.

Note that the parameter ψ in the definition of
Ps,a(www,ψ) is redundant. It can be set to 1 without
loss of generality: Ps,a(www,ψ) = Ps,a(1/ψ · www, 1) when
ψ > 0. In other words, it is possible to change the size
of the ambiguity set solely by scaling the weights www.
To eliminate this redundancy, we assume without loss
of generality that the weights of the set are normalized
such that ∥www∥2 = 1.

In rectangular RMDPs, a unique optimal value func-
tion v̂vv ∈ RS exists and is a fixed point of the robust
Bellman operator L : RS → RS defined for each s ∈ S
and vvv ∈ RS as (Iyengar, 2005)

(Lvvv)s = max
a∈A

min
ppp∈P̂s,a

(
rrrs,a + γ · pppTvvv

)
. (4)

The optimal robust value function can be computed
using value iteration, policy iteration, and other meth-
ods (Ho et al., 2020; Iyengar, 2005; Kaufman and
Schaefer, 2013). The optimal robust policy π̂ : S → A
is greedy with respect to the optimal robust value func-
tion v̂vv, and the robust return can be computed from
the value function as (Ho et al., 2020):

ρ̂ = max
π∈Π

min
P∈P̂

ρ(π, P ) = pppT0v̂vv .

We will find it convenient to use ẑzzs,a ∈ RS , s ∈ S, a ∈
A to denote the vector of values associated with the
transitions from the state s and action a:

ẑzzs,a = rrrs,a + γ · v̂vv . (5)

In the remainder of the paper, we use P̂ to denote
a generic RMDP ambiguity set and use P(w,ψ) to
denote an ambiguity set defined in terms of a weighted
norm ball.

3 RMDPs for Percentile Optimization

This section describes the general algorithm for con-
structing RMDP ambiguity sets for optimizing the per-
centile criterion. We derive new bounds on the safety
and optimality of the RMDP solution and propose a
new algorithm that optimizes them. The bounds and
algorithms in this section are general and are not re-
stricted to norm-based ambiguity sets.

An important assumption, which is used throughout
this paper, is that the ambiguity set in the RMDP is
constructed to guarantee that it contains the unknown
transition probabilities P̃ with a high probability as
formalized next.

Assumption 1. The RMDP ambiguity set P̂ ⊆{
P : S ×A → ∆S

}
satisfies that:

PP̃
[
P̃ ∈ P̂

]
≥ 1− δ .
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Assumption 1 is common when constructing RMDPs
for optimizing the percentile criterion (Delage and
Mannor, 2010; Petrik and Russel, 2019). The follow-
ing theorem shows that Assumption 1 is a sufficient
condition for ρ̂ to be a lower bound on the true return
of the robust policy π̂. We state the result in terms of
a generic ambiguity set P̂.
Theorem 3.1. If Assumption 1 holds, then the fol-
lowing inequality is satisfied with probability 1− δ:

ρ̂ ≤ ρ(π̂, P̃ ) .

Please see Appendix A.1 for the proof.

Theorem 3.1 generalizes Theorem 4.2 in (Petrik and
Russel, 2019) by relaxing its assumptions. In partic-
ular, Assumption 1 allows for non-rectangular ambi-
guity sets P̂ and does not require the use of a union
bound in its construction.

Next, we bound the performance loss of the RMDP
policy π̂ with respect to the optimal percentile crite-
rion guarantee in (1). As we show, the quality of the
RMDP policy depends not simply on the absolute size
of the ambiguity set ψ, but on its span along a spe-
cific direction. The span βs,azzz (www,ψ) of an ambiguity
set Ps,a(www,ψ) along a vector zzz ∈ RS for s ∈ S and
a ∈ A is defined as:

βs,azzz (www,ψ) = max
ppp1,ppp2

{
(ppp1 − ppp2)Tzzz | ppp1, ppp2 ∈ Ps,a(www,ψ)

}
.

The following theorem bounds the performance loss of
the RMDP solution when using norm-bounded ambi-
guity sets. Note that Theorem 3.1 implies that, under
Assumption 1, the RMDP return ρ̂ bounds the true
return with high confidence and therefore must be a
lower bound on the optimal y⋆ in (1).

Theorem 3.2. When Assumption 1 holds for P̂ =
P(w,ψ), w : S ×A → RS++, ψ : S ×A → R+, then the
performance loss with respect to y⋆ optimal in (1) is:

0 ≤ y⋆ − ρ̂ ≤ 1

1− γ
·max
s∈S

max
a∈A

βs,aẑzzs,a(www,ψ) ,

where ρ̂ is a function of w and ψ.

The proof can be found in Appendix A.1.

The following illustrates how the span along ẑzz impacts
the performance loss of the RMDP policy.

Example 3.3. Consider an MDP with states
{0, 1, 2, 3} and a single action {1}. The state 0 is ini-
tial, and the states 1, 2, 3 are terminal with P (i, 1, i) =
1, i = 1, 2, 3 with zero rewards. To keep the notation
simple, we assume that it is only possible to tran-
sition from state 0 to states 1, 2, 3. The transition
probability p̃pp0,1 is uncertain and distributed as p̃pp0,1 ∼
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Figure 1: Posterior samples of p̃pp (blue) and ambiguity
sets Pstd (green) and Popt (red) from Example 3.3.

Dirichlet(10, 10, 1) with E[p̃pp0,1] = [0.48, 0.48, 0.04].
The rewards are rrr0,1 = [0.25, 0.25,−1]. The goal is
to maximize the percentile criterion with δ = 0.2.

Take the MDP from Example 3.3 and construct
RMDPs with the following two ambiguity sets depicted
in Figure 1. Let Pstd = P1,1(1/

√
3 · 1, 0.1) be the

standard ambiguity set with uniform weights, and let
Popt = P1,1(1/

√
1.12·[0.25, 0.25, 1], 0.1) be an ambiguity

set with optimized weights www = 1/
√
1.12 · [0.25, 0.25, 1].

The budgets for both ambiguity sets are minimally
sufficient to satisfy Assumption 1. Intuitively, this
means that at least 80% of the posterior samples of
p̃pp0,1 (blue dots in Figure 1) must be contained inside
of each ambiguity set. Now, with 80% confidence,
the RMDP with Popt guarantees return ρ̂opt = 0.16,
while the RMDP with Pstd guarantees only ρ̂std =
−0.06. Although the volumes of Pstd and Popt are
approximately equal, the span along the dimension
zzz = [0.25, 0.25,−1] of Popt is half of the span of Pstd.

Armed with the safety and performance loss guaran-
tees in Theorems 3.1 and 3.2, we propose a new heuris-
tic algorithm in Algorithm 1 which iteratively opti-
mizes the shape of the ambiguity set in order to im-
prove the guaranteed percentile. It constructs ambi-
guity sets that minimize the span of the ambiguity set.
The algorithm may not construct the optimal ambigu-
ity set because it first uses the nominal value function
vvv′. However, the algorithm provides guarantees on the
quality of the policy that it computes from Assump-
tion 1 and Theorems 3.1 and 3.2.

4 Minimizing Ambiguity Spans

This section describes tractable algorithms that opti-
mize the weightswww to minimize that span βs,azzz for some
fixed state s ∈ S, action a ∈ A, a vector zzz ∈ RS , and
a budget ψ ∈ R+. We describe an analytical solution
and a conic formulation that minimize an upper bound
on the span for weighted L1 and L∞ sets. The budget
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Algorithm 1: Ambiguity shape optimization scheme.

Input: Confidence 1− δ, posterior distribution f over P̃
Output: Ambiguity set P(www,ψ)

1 Compute vvv′ ∈ RS by solving maxπ ρ
(
π,E

[
P̃
])

and let zzz′s,a ← rrrs,a + γ · vvv′, s ∈ S, a ∈ A;
2 Compute minimal ψ′ : S ×A → R+ such that Assumption 1 holds for P(1/√S · 1, ψ′); // Algorithm 3

3 Compute wwws,a ← minwww∈RS
+
{βs,azzz′ (www,ψ′) | ∥www∥2 = 1} for each s ∈ S, a ∈ A; // Algorithm 2

4 Compute minimal ψ : S ×A → R+ such that Assumption 1 holds for P(www,ψ); // Algorithm 3

5 return Ambiguity set P(www,ψ)

ψ is fixed throughout this section; Section 5 describes
how to optimize it.

The goal of computing the weights www that minimize
the span of the ambiguity set for a fixed budget ψ can
be formalized as the following optimization problem:

min
www∈RS

+

{
βs,azzz (www,ψ) | ∥www∥2 = 1

}
. (6)

The optimization in (6) is not obviously convex, but
we propose methods that minimize an upper bound
on βs,azzz (www,ψ). Note that minimizing this upper bound
also minimizes an upper bound on Theorem 3.2.

We first describe two analytical solutions and then de-
scribe a more precise but also more computationally
intensive method based on second order conic approx-
imation. The following lemma provides a bound that
enables efficient optimization.

Lemma 4.1. The span βs,azzz of the ambiguity set
Ps,a(www,ψ) is bounded for any λ ∈ R as:

βs,azzz (www,ψ) ≤ 2 · ψ · ∥zzz − λ · 111∥⋆ , (7)

where ∥·∥⋆ is the norm dual to ∥·∥www.

The proof is deferred to Appendix A.2. Re-
call that the dual norm is defined as ∥ccc∥⋆ =
maxxxx∈RS

{
cccTxxx | ∥xxx∥ ≤ 1

}
.

In order to use the bound in Lemma 4.1, we need to
derive the dual norms to the weighted L1 and weighted
L∞ norms. For unweighted p-norms, it is well known
that L1 and L∞ norms are dual of each other, but we
are not aware of a similar result for their weighted vari-
ants. The following lemma establishes that weighted
L1 and L∞ norms are dual as long as their weights are
inverse elementwise.

Lemma 4.2. Suppose that www ∈ RS and www′ ∈ RS are
positive wi > 0, w′

i > 0 and satisfy that w′
i = 1/wi for

all i ∈ S. Then:

∥zzz∥∞,www′ = max
xxx∈RS

{
zzzTxxx | ∥xxx∥1,www = 1

}
.

The proof of the lemma can be found in Appendix A.2.

Algorithm 2: Weight optimization.

Input: Norm q ∈ {1,∞}, parameter λ ∈ R
Output: Weights www⋆ ∈ RS+ that minimize (7)

1 if q = 1 then

2 w⋆i ←
|zi−λ|1/3√∑S
j=1 |zj−λ|2/3

, ∀i ∈ S ;

3 else if q =∞ then

4 w⋆i ←
|zi−λ|√∑S
j=1|zj−λ|2

, ∀i ∈ S ;

5 end
6 return www⋆ ;

Based on the results above, Algorithm 2 summarizes
our algorithms for computing weights www that minimize
the upper bound on the performance loss in Theo-
rem 3.2. The algorithm runs in linear time. Note
that the algorithm assumes that a value of λ is given.
Although it would be possible to optimize for the best
value of λ, our preliminary experimental results sug-
gest that this is not worthwhile because it does not
lead to a significant improvement. Instead, we use
λ = (maxi zi + mini zi)/2 and λ = median(zzz) for L∞
and L1 norms respectively. These are the optimal val-
ues (values for which the upper bound is smallest)
for the uniform weight version of (7). The following
proposition states the correctness of this algorithm.

Proposition 4.3. Fix an arbitrary λ ∈ R and let
www⋆ ∈ RS+ the return from Algorithm 2. Then www⋆ is an
optimal solution to (7) weighted L1 and L∞ norms.

Please see Appendix A.2 for the proof.

It is important to recognize that even though Algo-
rithm 2 effectively minimizes the value βs,azzz , it may,
in the process, violate Assumption 1. This is because
scaling weights may reduce the probability that P̃ ∈ P.
We are not aware of a tractable algorithm that can
optimize the weights www directly while enforcing the
constraint of Assumption 1. Instead, the constraint
∥www∥2 = ψ serves as a proxy to prevent the ambigu-
ity from shrinking. This is why it is necessary to re-
optimize the budget ψ in Algorithm 1 after the weights
are optimized.
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As an alternative to the analytical algorithms in Al-
gorithm 2, we also examine a Second-Order Conic
Program (SOCP) formulation. This formulation op-
timizes a tighter upper bound on βs,azzz but is more
computationally intensive. For any fixed state s and
action a, the following SOCP minimizes the bound (7)
on βs,azzz (www,ψ) for the L1 norm:

minimize
ggg,c,λ

ψ · c

subject to ggg ≥ max{zzz − λ · 1,−zzz + λ · 1}
gggTggg ≤ c2, ggg ≥ 0 .

(8)

The SOCP formulation follows from Lemma 4.2 and
variable substitution ggg = www · c.

Remark 4.4 (Unreachable states). We assume that the
prior can specify some transitions as impossible, or un-
reachable: that is P (s, a, s′) = 0. This information is
used as an additional pre-processing step in optimiz-
ing the weights. In particular, if the transition from
state s after taking action a to state s′ is not possible,
then we set (wwws,a)s′ = ∞. Or, in other words, each
ppp ∈ Ps,a(www,ψ) satisfies ps′ = 0.

5 Minimizing Ambiguity Budgets

This section describes how to determine the size of
the ambiguity set in the Bayesian setting in order to
minimize the performance loss in Theorem 3.2 of the
RMDP policy while satisfying Assumption 1. We as-
sume that the weights wwws,a, s ∈ S, a ∈ A are arbitrary
but fixed and aim to construct ψs,a, s ∈ S, a ∈ A to
minimize the performance loss.

Before describing the algorithm, we state a simple ob-
servation that motivates its construction. The follow-
ing lemma implies that the smaller the ambiguity bud-
get is, the better ρ̂ approximates the percentile crite-
rion. Of course, this is only true as long as the budget
is sufficiently large for Assumption 1 to hold. The fol-
lowing proposition follows from the definition of βs,azzz
by algebraic manipulation.

Lemma 5.1. The function ψ 7→ βs,azzz (wwws,a, ψ) is non-
decreasing.

We are now ready to describe our method as out-
lined in Algorithm 3. The algorithm follows the well-
known sample average approximation (SAA) approach
common in stochastic programming (Shapiro et al.,
2014). It constructs ambiguity sets as credible regions
for the posterior distribution over P̃ similarly to prior
work (Petrik and Russel, 2019). The next proposition
states the correctness of Algorithm 3.

Proposition 5.2. Suppose that ψs,a are computed by
Algorithm 3 for some wwws,a for each s ∈ S and a ∈ A.

Algorithm 3: Budget optimization.

Input: Posterior samples P1, . . . , Pn from P̃ ,
weights wwws,a, norm q ∈ {1,∞}

Output: Nominal p̄pps,a and budget ψs,a
1 Compute nominal p̄pps,a ← (1/n)

∑n
i=1 Pi(s, a) ;

2 Compute distance di ←
∥∥Pi(s, a)− p̄pps,a∥∥q,wwws,a

;

3 Ascending sort: d(j) ≤ d(j+1), j = 1, . . . , n;
4 Compute the quantile ψs,a ← d(⌈(1−δ/(S·A))·n⌉) ;
5 return p̄pps,a and ψs,a

Also let w : (s, a) 7→ wwws,a and ψ : (s, a) 7→ ψs,a. Then
P(w,ψ) satisfies Assumption 1 with high probability
when a sufficient number of samples from P̃ are used.

Please see Appendix A.3 for the proof.

Algorithm 3 constructs credible regions for each state
and action separately (Murphy, 2012). A notable lim-
itation of Algorithm 3 is that it constructs the cred-
ible regions independently for each state and action.
Although this is convenient computationally, it also
means that the confidence region needs to rely on the
union bound which makes it the impractical when the
number of states and actions is large. Although, As-
sumption 1 allows for a construction that avoids the
union-bound-based construction.

While Proposition 5.2 provides asymptotic conver-
gence guarantees, it is possible to obtain finite sample
guarantee by using more careful analysis (Luedtke and
Ahmed, 2008) or by adapting Algorithm 3 as suggested
in (Hong et al., 2020). We leave this finite-sample anal-
ysis for future work.

6 Frequentist Guarantees

In this section, we extend the analysis above to outline
how our results apply to frequentist guarantees. The
advantage of the frequentist setup is that it provides
guarantees even without needing access to a prior dis-
tribution. The disadvantage is that, without good pri-
ors, frequentist settings may need an excessive amount
of data to provide reasonable guarantees. The main
contribution in this section are new sampling bounds
for weighted L1 and L∞ ambiguity sets.

The frequentist perspective on the percentile crite-
rion (Delage and Mannor, 2010) represents a viable
alternative to the Bayesian perspective when it is dif-
ficult to construct a good prior distribution. The
frequentist view assumes that the true model P ⋆ is
known. The analysis considers the uncertainty over
datasets. To define the criterion, let D represent the
set of all possible datasets D. Then the pair of algo-
rithms F : D → Π, which computes the policy for a
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dataset, and G : D → R, which estimates the return
of the policy, solves the percentile criterion if:

PD∼P⋆ [ρ(F (D), P ⋆) ≥ G(D)] ≥ 1− δ . (9)

A frequentist modeler assumes that P ⋆s,a is fixed and
the probability statements are qualified over sampled
data sets (st, at, s

′
t)t=1,...,T generated from the true

transition probabilities s′t ∼ ppp⋆st,at .

To construct an RMDP that solves the frequentist per-
centile criterion, we make very similar assumptions
to the Bayesian setting. The next assumption re-
states Assumption 1 in the frequentist setting; note
the change in random variables.

Assumption 2. The data-dependent ambiguity set P̂
satisfies:

PD∼P⋆

[
P ⋆ ∈ P̂

]
≥ 1− δ ,

where P̂ is a function of D.

Recall that Theorem 3.1 establishes that an RMDP
that satisfies Assumption 1 computes a high-
confidence lower bound on the return. The proof
of Theorem 3.1 easily extends to the frequen-
tist setup. Therefore, Assumption 2 implies that
PD [ρ̂ ≤ ρ(π̂, P )] ≥ 1− δ where ρ̂ and π̂ are the return
and policy to the RMDP. In other words, the RMDP
algorithm (joint policy and return estimate computa-
tion) solves the frequentist percentile criterion in (9)
when Assumption 2 holds.

Because the optimization methods described in Sec-
tion 4 make no probabilistic assumptions, they can be
applied to the frequentist setup with no change. The
optimization of ψ described in Section 5 assumes that
samples from the posterior over transition functions
are available and cannot be readily used to satisfy As-
sumption 2. Instead, we present two new finite-sample
bounds that can be used to construct frequentist am-
biguity sets. Since prior work has been limited to the
ambiguity sets defined in terms L1 ambiguity sets with
uniform weights (Auer et al., 2010; Dietterich et al.,
2013; Petrik and Russel, 2019; Weissman et al., 2003),
we derive new high-confidence bounds for ambiguity
sets defined using weighted L1 and L∞ norms. To
state our new results, let the nominal point p̄pps,a ∈ ∆S

in (3) be the empirical estimate of the transition prob-
ability computed from ns,a ∈ N transition samples for
each state s ∈ S and action a ∈ A.
Theorem 6.1 (L∞ norm). Suppose that P(www,ψ) is
defined in terms of the wwws,a-weighted L∞ norm. Then
Assumption 2 is satisfied if ψs,a ∈ R+ for each s ∈ S
and a ∈ A satisfies the following inequality:

δ ≤ 2 · SA ·
S∑
i=1

exp

(
−2

ψ2
s,a · ns,a
(wwwsa)2i

)
. (10)

Theorem 6.2 (L1 norm). Suppose that P(www,ψ) is
defined in terms of the wwws,a-weighted L1 norm. Then
Assumption 2 is satisfied if ψs,a ∈ R+ for each s ∈ S
and a ∈ A satisfies the following inequality:

δ ≤ 2 · SA ·
S−1∑
i=1

2S−i · exp

(
−
ψ2
s,a · ns,a

2 · (wwwsa)2i

)
, (11)

where positive weights wwws,a ∈ RS++, s ∈ S, a ∈ A
are assumed to be sorted in a non-increasing order
(wwws,a)i ≥ (wwws,a)i+1 for i = 1, . . . , S − 1.
The proofs of the theorems are in Appendix A.4. They
follow by standard techniques combining the Hoeffding
and union bounds.

A natural question is how to construct ψs,a that satis-
fies Theorems 6.1 and 6.2. Although the theorems do
not provide us with an analytical solution, the value of
ψs,a can be computed efficiently using the standard bi-
section method (Boyd and Vandenberghe, 2004). This
is because right-hand side functions in (10) and (11)
are monotonically decreasing in ψs,a, s ∈ S, a ∈ A.
Theorem A.3 further tightens the error bounds using
Bernstein’s inequality.

Theorems 6.1 and 6.2 also provide new insights into
which ambiguity set may be a better fit for a particular
problem. Simple algebraic manipulation and (7) show
that the L1 norm is preferable to the L∞ norm when
∥vvv − v̄ · 1∥1 >

√
S · ∥vvv − ṽ · 1∥∞. Here, vvv ∈ RS is the

optimal value function, v̄ = 1Tvvv/S is the mean value,
and ṽ is the median value of vvv.

In terms of their tightness, Theorems 6.1 and 6.2
are similar to the most well-known bounds on the
uniformly-weighted norms. Theorem 6.2 recovers the
equivalent best-known (Hoeffding-based) result for
uniformly-weighted norm within a factor of 2. We are
not aware of comparable prior results for ambiguity
sets defined in terms of L∞ norms. Unfortunately, fre-
quentist bounds on probability distributions are gen-
erally useful only when the number of samples ns,a is
quite large. We also investigated Bernstein-based ver-
sions of the bounds, but they show little difference in
our experimental results.

Finally, it is important to note that Theorems 6.1
and 6.2 require that the weights www are independent
of data. Therefore, the weights www should be optimized
using a dataset different from the one used to estimate
ψ. However, in our experiment, we found that reusing
the same dataset to optimize bothwww and ψ empirically
does compromise the percentile guarantees.

7 Empirical Evaluation

In this section, we evaluate Algorithm 1 empirically
using five standard reinforcement domains that have
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been previously used to evaluate robustness.

Tables 1 and 2 summarize the results for the Bayesian
and frequentist setups respectively. The results com-
pare our algorithms (rows) against baselines (rows)
for fixed datasets D for all domains (column). The
method names indicate how the weights are computed
and which norm is used to defined the ambiguity
set. Methods denoted as “Uniform” represent www = 1
and “Optimized” represent www computed using Algo-
rithms 1 and 2. Please see Appendix B for a com-
plete report of the statistics and methods (including
the SOCP formulation).

As the main metric, we compare the computed return
guarantees ρ̂ (the return of the RMDP). Because all
methods use ambiguity sets that satisfy Assumptions 1
and 2, ρ̂ lower bounds ρ(π̂, P̃ ) with probability 1− δ.
In order to enable the comparison of the results among
different domains, we normalize the guarantee by the
maximal nominal return ρ̄ = maxπ∈Π ρ(π,E[P̃ ]). We
use ρ̄ instead of the unknown y⋆.

As a baseline, we compare our results with the
standard RMDPs construction (Delage and Mannor,
2010; Petrik and Russel, 2019), which uses uniformly-
weighted L1 and L∞ norms. We do not compare to
policy-gradient-style methods in (Delage and Mannor,
2010) because they cannot be used with general pos-
terior distributions over P̃ in our domains. We note
that various modifications to probability norms have
been proposed in the RL context (e.g., (Maillard et al.,
2014; Taleghan et al., 2015)), but it is unclear how to
use them in the context of the percentile criterion.

The results in Tables 1 and 2 show that optimizing the
weights in RMDP ambiguity sets decreases the guar-
anteed performance loss dramatically in Bayesian set-
tings (geometric mean 2.8×) and reliably in frequen-
tist settings (geometric mean 1.6×). The guarantees
improve because the RMDPs with optimized sets si-
multaneously compute a better policy and a tighter
bound on its return. Note that zero losses in the ta-
bles may be unachievable (ρ̄ > y⋆), and losses greater
than one are possible (when ρ̄ < 0). The total com-
putational complexity of Algorithms 1 and 2 is small
and reported in Appendix B.

We now briefly summarize the domains used; please
consult Appendix B for more details.

RiverSwim (RS) is a simple and standard bench-
mark (Strehl and Littman, 2008), which is an MDP
consisting of six states and two actions. The process
follows by sampling synthetic datasets from the true
model and then computing the guaranteed robust re-
turns for different methods. The prior is a uniform
Dirichlet distribution over reachable states.

RS MR PG IM CP

Uniform L1 0.60 1.56 5.24 0.97 0.77
Uniform L∞ 0.60 1.56 5.50 0.98 0.76
Optimized L1 0.25 0.41 1.84 0.90 0.12
Optimized L∞ 0.31 0.39 3.10 0.87 0.19

Table 1: Normalized Bayesian performance loss (ρ̄ −
ρ̂)/|ρ̄| for δ = 0.05. (Smaller value is better).

RS MR PG IM CP

Uniform L1 0.80 5.83 5.66 1.05 0.78
Uniform L∞ 0.76 3.45 5.65 1.05 0.78
Optimized L1 0.53 1.05 5.55 0.99 0.77
Optimized L∞ 0.43 0.94 5.56 0.96 0.69

Table 2: Normalized frequentist performance loss (ρ̄−
ρ̂)/|ρ̄| for δ = 0.05. (Smaller value is better).

Machine Replacement (MR) is a small benchmark
MDP problem with S = 10 states that models progres-
sive deterioration of a mechanical device (Delage and
Mannor, 2010). Two repair actions A = 2 are avail-
able and restore the machine’s state. Uses a Dirichlet
prior.

Population Growth Model (PG) is an exponential pop-
ulation growth model (Kéry and Schaub, 2011), which
constitutes a simple state-space 0, . . . , S = 50 with ex-
ponential dynamics. At each time step, the land man-
ager has to decide whether to apply a control measure
to reduce the species’ growth rate. We refer to (Tirin-
zoni et al., 2018) for more details of the model.

Inventory Management (IM) is a classic inventory
management problem (Zipkin, 2000), with discrete in-
ventory levels 0, . . . , S = 30. The purchase cost, sale
price, and holding cost are 2.49, 3.99, and 0.03, respec-
tively. The demand is sampled from a normal distri-
bution with a mean S/4 and a standard deviation of
S/6. It also uses a Dirichlet prior.

Cart-Pole (CP) is the standard RL benchmark prob-
lem (Brockman et al., 2016; Sutton and Barto, 2018).
We collect samples of 100 episodes from the true dy-
namics. We fit a linear model with that dataset to
generate synthetic samples and aggregate close states
to a 200-cell grid (S = 200) using the k-nearest neigh-
bor strategy and assume a uniform Dirichlet prior.

8 Conclusion

We proposed a new approach for optimizing the per-
centile criterion using RMDPs that goes beyond the
conventional ambiguity sets. At the heart of our
method are new bounds on the performance loss of
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the RMDPs with respect to the optimal percentile cri-
terion. These bounds show that the quality of the
RMDP is driven by the span of its ambiguity sets along
a specific direction. We proposed a linear-time algo-
rithm that minimizes the span of the ambiguity sets
and also derived new sampling guarantees. Our ex-
perimental results show that this simple RMDP im-
provement can lead to much better return guarantees.
Future work needs to focus on scaling the method to
a large state-space using value function approximation
or other techniques.
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A Technical Results and Proofs

A.1 Proofs of Results in Section 3

Proof of Theorem 3.1. The result can be derived as:

PP̃∼f

[
ρ̂ ≤ ρ(π̂, P̃ )

]
(a)
= PP̃∼f

[
ρ(π̂, P̃ ) ≥ max

π∈Π
min
P∈P̂

ρ(π, P )

]
(b)
= PP̃∼f

[
ρ(π̂, P̃ ) ≥ min

P∈P̂
ρ(π̂, P )

]
(c)

≥ PP̃∼f

[
P̃ ∈ P̂

] (d)

≥ 1− δ .

The equality (a) follows from the definition of ρ̂, the inequality (b) follows from π̂ ∈ Π and is optimal, (c) follows
because ρ(π̂, P̃ ) ≥ minP∈P̂ ρ(π̂, P ) whenever P̃ ∈ P̂, and (d) follows from the theorem’s hypothesis.

Proof of Theorem 3.2. Let P̂ = P(www,ψ) and let ρ̂ and π̂ be the optimal return and policy for P̂ respectively. We
start by establishing the following bound:

ρ̂ ≥ max
π∈Π

ρ(π, P̃ )− βẑzz(www,ψ)

1− γ
,

where
βẑzz(www,ψ) = max

s∈S
max
a∈A

βs,aẑzz (www,ψ) .

Let v̂vv ∈ RS be the optimal robust value function that satisfied v̂vv = Lv̂vv for the ambiguity set P̂ = P(www,ψ). We
use P̂ as a shorthand for P(www,ψ) throughout the proof. Recall that ρ̂ = pppT0v̂vv. We also use TPπ to represent the
Bellman evaluation operator for a policy π ∈ Π and a transition function P defined for each s ∈ S as:

(TPπ vvv)s = P (s, π(s))T(rs,π(s) · 111 + γ · vvv) = P (s, π(s))Tzzzs,π(s) .

It is well known that TPπ v is a contraction, is monotone, and has a unique fixed point. Let ṽ be the unique fixed

point of TP̃π̃ :

ṽvv = TP̃π̃ ṽvv ,

where π̃ ∈ argmaxπ∈Π ρ(π, P̃ ). Note that it is well known that:

pppT0ṽvv = ρ(π̃, P̃ ) .

Now suppose that P̃ ∈ P̂, which holds with probability 1 − δ according to Assumption 1. Let π̂ be the robust
optimal policy for robust MDP with ambiguity set P̂. Then it is easy to see that:

pppT0v̂vv = min
P∈P̂

ρ(π̂, P ) ≤ ρ(π̂, P̃ ) ≤ max
π∈Π

ρ(π, P̃ ) = pppT0ṽvv .

Therefore:
0 ≤ pppT0ṽvv − pppT0v̂vv ≤ ∥ṽvv − v̂vv∥∞ .

We are now ready to establish the probabilistic bound which is based on bounding the Bellman residual as
follows:

(TP̃π̃ v̂vv − v̂vv)s
(a)
= (TP̃π̃ v̂vv − Lv̂vv)s

(def)
= P̃ (s, π̃(s))Tẑzzs,π̃(s) − min

P∈P̂
P (s, π̂(s))Tẑzzs,π̂(s)

(b)

≤ P̃ (s, π̃(s))Tẑzzs,π̃(s) − min
P∈P̂

P (s, π̃(s))Tẑzzs,π̃(s)

≤ max
a∈A

(
P̃ (s, a)Tẑzzs,a − min

P∈P̂
P (s, a)Tẑzzs,a

)
(c)

≤ max
a∈A

(
max
P∈P̂

P (s, a)Tẑzzs,a − min
P∈P̂

P (s, a)Tẑzzs,a

)
≤ max

a∈A
βs,aẑzz (www,ψ) .
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(a) follows from v̂vv being the fixed point of L, (b) follows from the optimality of π̂: π̂(s) ∈
argmaxa∈A minppp∈P̂s,a

pppTzzzs,a, and (c) follows from P̃ ∈ P̂. The rest follows by algebraic manipulation. Ap-

plying the inequality above to all states, we get:

TP̃π̃ v̂vv − v̂vv ≤ βẑzz(www,ψ) · 1 . (12)

We can now use the standard dynamic programming bounding technique to bound ∥ṽvv − v̂vv∥∞ as follows:

0
(a)

≤ ṽvv − v̂vv (b)
= ṽvv − TP̃π̃ v̂vv + TP̃π̃ v̂vv − v̂vv

(12)

≤ ṽvv − TP̃π̃ v̂vv + βẑzz(www,ψ) · 1
(c)

≤ TP̃π̃ ṽvv − TP̃π̃ v̂vv + βẑzz(www,ψ) · 1 .

We have (a) because v̂vv ≤ ṽvv because Lṽvv ≤ ṽvv and thus ṽvv ≥ LLṽvv ≥ . . . ≥ L . . .Lṽvv ≥ v̂vv because v̂vv is the fixed point

of L and L is monotone. (b) we add 0, (c) ṽvv is the fixed point of TP̃π̃ .

Next, apply L∞ norm to all sides, which is possible because the values are non-negative:

∥ṽvv − v̂vv∥∞ ≤
∥∥∥TP̃π̃ ṽvv − TP̃π̃ v̂vv + βẑzz(www,ψ) · 1

∥∥∥
∞

∥ṽvv − v̂vv∥∞ ≤ γ · ∥ṽvv − v̂vv∥∞ + βẑzz(www,ψ)

∥ṽvv − v̂vv∥∞ ≤ βẑzz(www,ψ)/(1− γ) .

The first step follows by triangle inequality, and the second step follows from TP̃π̃ being a γ contraction in the
L∞ norm.

To prove the bound on y⋆ and v̂, we show that y⋆ ≤ ζ where ζ = ρ̂+ βẑzz(www,ψ)/(1− γ). Suppose to the contrary
that y⋆ > ζ. Realize that y⋆ optimal in (1) must satisfy:

PP̃∼f

[
max
π∈Π

ρ(π, P̃ ) ≥ y⋆
]
≥ 1− δ , (13)

because maxπ∈Π ρ(π, P̃ ) ≥ ρ(π⋆, P̃ ) for π⋆ optimal in (1). Recall also that from the first part of the theorem:

PP̃∼f

[
max
π∈Π

ρ(π, P̃ ) ≥ ζ
]
≤ δ . (14)

We now derive a contradiction as follows:

δ
(14)

≥ PP̃∼f

[
max
π∈Π

ρ(π, P̃ ) ≥ ζ
]

(a)

≥ PP̃∼f

[
max
π∈Π

ρ(π, P̃ ) ≥ y⋆
]

(13)

≥ 1− δ .

Here (a) follows from the assumption y⋆ > ζ. Then δ ≥ 1− δ is a contradiction with δ < 0.5. Finally, 0 ≤ y⋆− ρ̂
follows directly from the optimality of y⋆ and Theorem 3.1, which proves the theorem.

A.2 Proof of Results in Section 4

Proof of Lemma 4.1. We omit the s, a subscripts to simplify the notation. By relaxing the non-negativity con-
straints on ppp and using substitution qqq1 = ppp1 − p̄pp and qqq2 = ppp2 − p̄pp, we get the following upper bound:

βs,azzz (www,ψ) = max
ppp1,ppp2

{
(ppp1 − ppp2)Tzzz | ppp1, ppp2 ∈ Ps,a(www,ψ)

}
= max
ppp1,ppp2

{
(ppp1 − ppp2)Tzzz | ∥ppp1 − p̄pp∥www ≤ ψ, ∥ppp2 − p̄pp∥www ≤ ψ, ppp1 ∈ ∆S , ppp2 ∈ ∆S

}
≤ max
ppp1,ppp2∈RS

{
(ppp1 − ppp2)Tzzz | ∥ppp1 − p̄pp∥www ≤ ψ, ∥ppp2 − p̄pp∥www ≤ ψ, 1

Tppp1 = 1, 1Tppp2 = 1
}

= max
qqq1,qqq2∈RS

{
(qqq1 − qqq2)Tzzz | ∥qqq1∥www ≤ ψ, ∥qqq2∥www ≤ ψ, 1

Tqqq1 = 0, 1Tqqq2 = 0
}

= max
qqq1∈RS

{
qqqT1zzz | ∥qqq1∥www ≤ ψ, 1

Tqqq1 = 0
}
+ max
qqq2∈RS

{
qqqT2(−zzz) | ∥qqq2∥www ≤ ψ, 1

Tqqq2 = 0
}
.
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The last equality follows because the the optimization problems over qqq1 and qqq2 are independent. From the
absolute homogeneity of the ∥·∥www we have that:

max
qqq2∈RS

{
qqqT2(−zzz) | ∥qqq2∥www ≤ ψ, 1

Tqqq2 = 0
}

= max
qqq2∈RS

{
qqqT2zzz | ∥qqq2∥www ≤ ψ, 1

Tqqq2 = 0
}
,

and therefore:
βs,azzz (www,ψ) ≤ 2 · max

qqq∈RS

{
qqqTzzz | ∥qqq∥www ≤ ψ, 1

Tqqq = 0
}
.

Substituting qqq = ppp− p̄pp we get:

βs,azzz (www,ψ) ≤ 2 · max
ppp∈RS

{
pppTzzz | ∥ppp− p̄pp∥www ≤ ψ, 1

Tppp = 1
}
− 2 · zzzTp̄pp . (15)

We can reformulate the optimization problem on the right-hand side of (15), again using variable substitution
qqq = ppp− p̄pp:

max
qqq∈RS

2 · (qqq + p̄pp)Tzzz − 2 · zzzTp̄pp

s.t. ∥qqq∥www ≤ ψ
111T(qqq + p̄pp) = 1 =⇒ 111Tqqq = 0 .

Canceling out p̄ppTzzz, we continue with:
2 · max

qqq∈RS
qqqTzzz

s.t. ∥qqq∥www ≤ ψ
111Tqqq = 0 .

By applying the method of Lagrange multipliers, we obtain:

min
λ∈R

max
qqq∈RS

qqqTzzz − λ · (qqqT111) = qqqT(zzz − λ · 111)

s.t. ∥qqq∥www ≤ ψ .

Letting xxx = qqq
ψ , we get:

min
λ∈R

max
xxx∈RS

ψ · xxxT(zzz − λ · 111)

s.t. ∥xxx∥www ≤ 1 .

Given the definition of the dual norm, ∥zzz∥⋆ = sup{zzz⊺xxx | ∥xxx∥ ≤ 1}, we have:

βs,azzz (www,ψ) ≤ 2 ·min
λ∈R

ψ · ∥zzz − λ · 111∥⋆

≤ 2 · ψ · ∥zzz − λ · 111∥⋆ .

Proof of Lemma 4.2. Assume we are given a set of positive weights www ∈ Rn++ for the following weighted L1

optimization problem:
max
xxx∈RS

zzzTxxx

s.t. ∥xxx∥1,www ≤ 1 .
(16)

We have:

xxxTzzz =

n∑
i=1

xi · zi ≤
n∑
i=1

|xi · zi|

(a)

≤
n∑
i=1

|xi| · |zi| =
n∑
i=1

wi · |xi| ·
1

wi
· |zi|

≤ max
i=1,...,n

{
1

wi
· |zi|

}
·
n∑
i=1

wi|xi| = max
i=1,...,n

{
1

wi
· |zi|

}
· ∥xxx∥1,www

(b)

≤ max
i=1,...,n

{
1

wi
|zi|
}

= ∥zzz∥∞, 1
www
.
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Here, (a) follows from the Cauchy-Schwarz inequality, and (b) follows from the constraint ∥xxx∥1,www ≤ 1 of (16).

Proof of Proposition 4.3. We use the notation 1/www to denote an elementwise inverse of www such that (1/www)i =
1/wi, i ∈ S. Note that for weighted L1-constrained sets q = ∞, and for the L∞-constrained sets q = 1. The

value λ̄ in (7) is fixed ahead of time and does not change with www. Recall that the constraint
∑S
i=1 w

2
i = 1 serves

to normalize www in order to preserve the desired robustness guarantees with the same ψ. This is because scaling
both www and ψ simultaneously by an identical factor leaves the ambiguity set unchanged. We adopt the constraint
from an approximation of the guarantee by linearization of the upper bound using Jensen’s inequality. Next,
omitting terms that are constant with respect to www simplifies the optimization to:

www⋆ ∈ argmin
www∈RS

++

{∥∥zzz − λ̄111∥∥
q, 1

www

:

S∑
i=1

w2
i = 1

}
. (17)

For q =∞, the nonlinear optimization problem in (17) is convex and can be solved analytically. Let bi =
∣∣zi − λ̄∣∣

for i = 1, . . . , S, then (17) turns to:

min
t,www∈RS

++

{
t : t ≥ bi/wi,

S∑
i=1

w2
i = 1

}
. (18)

The constraints www > 0 cannot be active since otherwise 1/wi results in undefined division by zero and can be
safely ignored. Then, the convex optimization problem in Equation (18) has a linear objective, S + 1 variables
(www’s and t), and S + 1 constraints. All constraints are active, therefore, in the optimal solution www⋆ (Bertsekas,
2003) which must satisfy:

w⋆i = bi/
√∑S

j=1 b
2
j . (19)

Since
∑
i w

2
i = 1 implies

∑
i b

2
i /t

2 = 1, we conclude that t =
√∑

i b
2
i . For q = 1, the equivalent optimization of

(18) becomes:

min
www>0

{
S∑
i=1

bi/wi :

S∑
i=1

w2
i = 1

}
. (20)

Again, the inequality constraints on weights www > 0 can be relaxed. Using the necessary optimality conditions
(and a Lagrange multiplier), one solution for the optimal weights www are:

w⋆i = b
1/3
i /

√∑S
j=1 b

2/3
j . (21)

A.3 Proof of Results in Section 5

Proof of Proposition 5.2. The algorithm is an instance of the Sample Average Approximation (SAA) scheme.
The result, therefore, is a direct consequence of Theorem 4.2 in (Petrik and Russel, 2019) and Theorem 5.3 in
(Shapiro et al., 2014).

A.4 Proof of Results in Section 6

We need several auxiliary results before proving the results.

Theorem A.1 (Weighted L∞ error bound (Hoeffding)). Suppose that p̄pps,a is the empirical estimate of the
transition probability obtained from ns,a samples for some s ∈ S and a ∈ A. Then:

Pp̄pps,a
[∥∥p̄pps,a − ppp⋆s,a∥∥∞,www

≥ ψs,a
]
≤ 2

S∑
i=1

exp

(
−2

ψ2
s,ans,a

w2
i

)
. (22)

Proof. First, we will express the weighted L∞ distance between two distributions p̄pp and ppp⋆ in terms of an
optimization problem. Let 111i ∈ RS be the indicator vector for an index i ∈ S:∥∥p̄pps,a − ppp⋆s,a∥∥∞,www

= max
zzz

{
zzzTW (p̄pps,a − ppp⋆s,a) : ∥zzz∥1 ≤ 1

}
= max

i∈S

{
111iW (p̄pps,a − ppp⋆s,a),−111iW (p̄pps,a − ppp⋆s,a)

}
.
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Here, weights are on the diagonal entries of W . Using the expression above, we can bound the probability in the
lemma as follows:

P
[∥∥p̄pps,a − ppp⋆s,a∥∥∞,www

≥ ψ
]
= P

[
max
i∈S

{
111iW (p̄pps,a − ppp⋆s,a),−111iW (p̄pps,a − ppp⋆s,a)

}
≥ ψs,a

]
(a)

≤ Smax
i∈S

P
[
111iW (p̄pps,a − ppp⋆s,a) ≥ ψs,a

]
+ Smax

i∈S
P
[
−111iW (p̄pps,a − ppp⋆s,a) ≥ ψs,a

]
(b)

≤ 2

S∑
i=1

exp

(
−2

ψ2
s,an

w2
i

)
.

Here, (a) follows from union bound, and (b) follows from Hoeffding’s inequality since 111Ti p̄pp ∈ [0, 1] for any i ∈ S
and its mean is 111Ti ppp

⋆.

Now we describe a proof of error bound in (23) on the weighted L1 distance between the estimated transition
probabilities p̄pp and the true one ppp⋆ over each state s ∈ S = {1, . . . , S} and action a ∈ A = {1, . . . , A}. The proof
is an extension to Lemma C.1 (L1 error bound) in (Petrik and Russel, 2019).

Theorem A.2 (Weighted L1 error bound (Hoeffding)). Suppose that p̄pps,a is the empirical estimate of the tran-

sition probability obtained from ns,a samples for some s ∈ S and a ∈ A. If the weights www ∈ RS++ are sorted in a
non-increasing order wi ≥ wi+1, then:

Pp̄pps,a
[∥∥p̄pps,a − ppp⋆s,a∥∥1,www ≥ ψs,a] ≤ 2

S−1∑
i=1

2S−i exp

(
−
ψ2
s,ans,a

2w2
i

)
. (23)

Proof. Let qqqs,a = p̄pps,a − ppp⋆s,a. To shorten notation in the proof, we omit the s, a indexes when there is no
ambiguity. We assume that all weights are non-negative. First, we will express the L1,www norm of qqq in terms of
an optimization problem. It is worth noting that 111Tqqq = 0. Let 111Q1

,111Q2
∈ RS be the indicator vectors for some

subsets Q1,Q2 ⊂ S where Q2 = S \ Q1. According to Lemma 4.2 we have:

∥qqq∥1,w = max
zzz

{
zzzTqqq : ∥zzz∥∞, 1

w
≤ 1
}

= max
Q1,Q2∈2S

{
111TQ1

Wqqq +111TQ2
W (−qqq) : Q2 = S \ Q1

}
.

Here weights are on the diagonal entries of W . Using the expression above, we can bound the probability as
follows:

P
[

max
Q1,Q2∈2S

{
111TQ1

Wqqq +111TQ2
W (−qqq)

}
≥ ψ

]
(a)

≤ P
[
max
Q1∈2S

{
111TQ1

Wqqq
}
≥ ψ

2

]
+ P

[
max
Q2∈2S

{
111TQ2

W (−qqq)
}
≥ ψ

2

]
≤

∑
Q1∈2S

P
[
111TQ1

Wqqq ≥ ψ

2

]
+
∑

Q2∈2S

P
[
111TQ2

W (−qqq) ≥ ψ

2

]

=
∑

Q1∈2S

P
[
111TQ1

W (p̄pp− ppp⋆) ≥ ψ

2

]
+
∑

Q2∈2S

P
[
111TQ2

W (−p̄pp+ ppp⋆) ≥ ψ

2

]
(b)

≤
∑

Q1∈2S

exp

(
− ψ2n

2
∥∥111TQ1

W
∥∥2
∞

)
+
∑

Q2∈2S

exp

(
− ψ2n

2
∥∥111TQ2

W
∥∥2
∞

)

(c)
= 2

S−1∑
i=1

2S−i exp

(
−ψ

2n

2w2
i

)
.

(a) follows from union bound, and (b) follows from Hoeffding’s inequality. (c) follows by Qc1 = Q2 and sorting
weights www = {w1, . . . , wn} in non-increasing order.

Proof of Theorem 6.1. The result follows from Lemma A.1 in (Petrik and Russel, 2019) and Theorem A.1 by
algebraic manipulation.

Proof of Theorem 6.2. The result follows from Lemma A.1 in (Petrik and Russel, 2019) and Theorem A.2 by
algebraic manipulation.
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A.5 Bernstein Concentration Inequalities

Theorem A.3 (Weighted L1 error bound (Bernstein)). Suppose that p̄pps,a is the empirical estimate of the tran-

sition probability obtained from ns,a samples for some s ∈ S and a ∈ A. If the weights www ∈ RS++ are sorted in
non-increasing order wi ≥ wi+1, then the following holds when using Bernstein’s inequality:

P
[∥∥p̄pps,a − ppp⋆s,a∥∥1,www ≥ ψs,a] ≤ 2

S−1∑
i=1

2S−i exp

(
− 3ψ2n

6w2
i + 4ψwi

)

where www ∈ RS++ is the vector of weights. The weights are sorted in non-increasing order.

Proof. The proof is similar to the proof of Theorem A.2 until section b. The proof continues from section (b) as
follows:

(b)

≤
∑

Q1∈2S

exp

(
− 3ψ2n

24σ2 + 4cψ

)
+
∑

Q2∈2S

exp

(
− 3ψ2n

24σ2 + 4cψ

)
(c)

≤
∑

Q1∈2S

exp

(
− 3ψ2n

6
∥∥111TQ1

W
∥∥2
∞ + 4ψ

∥∥111TQ1
W
∥∥
∞

)
+
∑

Q2∈2S

exp

(
− 3ψ2n

6
∥∥111TQ2

W
∥∥2
∞ + 4ψ

∥∥111TQ2
W
∥∥
∞

)

(d)
= 2

S−1∑
i=1

2S−i exp

(
− 3ψ2n

6w2
i + 4ψwi

)
.

Here (b) follows from Bernstein’s inequality where σ2 is the mean of variance of random variables, and c is
their upper bound (Devroye et al., 2013). In the weighted case, with conservative estimate of variance σ2 =∥∥111TQ1

W
∥∥2
∞/4, and c =

∥∥111TQ1
W
∥∥
∞, because the random variables are drawn from Bernoulli distribution with the

maximum possible variance of 1/4. (d) follows by sorting weights www in non-increasing order.

B Detailed Experimental Results

B.1 Experimental Setup

We assess L1− and L∞-bounded ambiguity sets, both with weights and without weights. We compare Bayesian
credible regions with frequentist Hoeffding- and Bernstein-style sets. We start by assuming a true underlying
model that produces simulated datasets containing 20 samples for each state and action. The frequentist methods
construct ambiguity sets directly from the datasets. Bayesian methods combine the data with a prior to compute a
posterior distribution and then draw 20 samples from the posterior distribution to construct a Bayesian ambiguity
set.

B.2 RiverSwim MDP Graph

s0 s1 · · · s4 s5

(1, r = 5)

0.7 0.6
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1
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(0.3, r = 10000)
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Figure 2: RiverSwim problem with six states and two actions (left-dashed arrow, right-solid arrow). The agent
starts in either states s1 or s2.
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B.3 Full Empirical Results

Tables 3 to 6 report the high-confidence lower bound on the return for the domains that we investigate. The
column denotes the confidence 1 − δ and the algorithm used to compute the weights www for the ambiguity set:
“Unif.w” corresponds to www = 1, “Analyt.w” corresponds to weights computed by Algorithm 2, and “SOCP.w”
corresponds to weights computed by solving (8). The rows indicate which norm was used to define the ambiguity
set (L1 or L∞) and whether Bayesian (B) or frequentist (H) guarantees were used. Note that the SOCP
formulation is limited to the L1 ambiguity sets.

Method

δ = 0.5 δ = 0.05

Unif.w Analyt.w SOCP.w Unif.w Analyt.w SOCP.w

L1B 33887 51470 48620 25252 47284 43504
L∞B 33887 48258 - 25252 43247 -

L1 H 16354 33116 30268 12555 29472 26398
L∞ H 20055 40166 - 15184 35955 -

Table 3: The return with performance guarantees for the RiverSwim experiment. The return of the nominal
MDP is 63080.

Method

δ = 0.5 δ = 0.05

Unif.w Analyt.w SOCP.w Unif.w Analyt.w SOCP.w

L1B -38.1 -22.7 -26.8 -42.0 -23.7 -28.4
L∞B -38.1 -22.6 - -42.0 -23.5 -

L1 H -86.8 -33.2 -47.9 -115.0 -34.5 -53.1
L∞ H -62.9 -29.5 - -74.8 -32.6 -

Table 4: The return with performance guarantees for the Machine Replacement experiment. The return of the
nominal MDP is -16.79.

Method

δ = 0.5 δ = 0.05

Unif.w Analyt.w SOCP.w Unif.w Analyt.w SOCP.w

L1B -25706 -12151 -12668 -25741 -12200 -12704
L∞B -26782 -15468 - -26795 -15623 -

L1 H -27499 -27034 -27409 -27501 -27047 -27421
L∞ H -27465 -27143 - -27473 -27184 -

Table 5: The return with performance guarantees for the Population experiment. The return of the nominal
MDP is -4127.

Method

δ = 0.5 δ = 0.05

Unif.w Analyt.w SOCP.w Unif.w Analyt.w SOCP.w

L1B 3.75 15.7 10.9 3.64 15.0 10.6
L∞B 3.04 20.2 - 2.87 19.8 -

L1 H -8.91 1.58 -6.18 -8.94 0.89 -7.74
L∞ H -8.37 5.83 - -8.63 4.90 -

Table 6: The return with performance guarantees for the Inventory Management experiment. The return of the
nominal MDP is 163.1.
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Method

δ = 0.5 δ = 0.05

Unif.w Analyt.w SOCP.w Unif.w Analyt.w SOCP.w

L1B 3.83 8.28 4.21 3.82 8.25 4.20
L∞B 3.81 7.78 - 3.78 7.71 -

L1 H 2.81 3.44 2.87 2.80 3.42 2.85
L∞ H 3.18 3.94 - 3.15 3.92 -

Table 7: The return with performance guarantees for the Cart-Pole experiment. The return of the nominal MDP
is 11.11.


